Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Metallophthalocyanine (MPc)-linked conductive two-dimensional (2D) metal−organic frameworks (MOFs) hold tremendous promise as modular 2D materials in sensing, catalysis, and energy-related applications due to their combinatory bimetallic system from the MPc core and bridging metal nodes, endowing them with high electrical conductivity and multifunctionality. Despite significant advances, there is a gap in fundamental understanding regarding the periodic effects of metal nodes on the structural properties of MP-linked 2D MOFs. Herein, we report a series of highly crystalline MOFs wherein copper phthalocyanine (CuPc) is linked with Ni, Cu, and Zn nodes (CuPc-O-M, M: Ni, Cu, Zn). The prepared CuPc-O-M MOFs exhibit p-type semiconducting properties with an exceptionally high range of electrical conductivity. Notably, the differences in the 3d orbital configurations of the Ni, Cu, and Zn nodes in CuPc-O-M MOFs lead to perturbations of the interlayer stacking patterns of the 2D framework materials, which ultimately affect material properties, such as semiconducting band gaps and charge transport within the framework. The Cu2+ (3d9) metal node within the eclipsed interlayer stacking of CuPc-O-Cu MOF demonstrates excellent charge transport, which results in the smallest band gap of 1.14 eV and the highest electrical conductivity of 9.3 S m−1, while the Zn2+ (3d10) metal node within CuPc-O-Zn results in a slightly inclined interlayer stacking, leading to the largest band gap of 1.27 eV and the lowest electrical conductivity of 2.9 S m−1. These findings form an important foundation in the strategic molecular design of this class of materials for multifaceted functionality that builds upon the electronic properties of these materials.more » « lessFree, publicly-accessible full text available March 12, 2026
- 
            Medicago, a genus in the Leguminosae or Fabaceae family, includes the most globally significant forage crops, notably alfalfa (Medicago sativa). Its close diploid relative Medicago truncatula serves as an exemplary model plant for investigating legume growth and development, as well as symbiosis with rhizobia. Over the past decade, advances in Medicago genomics have significantly deepened our understanding of the molecular regulatory mechanisms that underlie various traits. In this review, we comprehensively summarize research progress on Medicago genomics, growth and development (including compound leaf development, shoot branching, flowering time regulation, inflorescence development, floral organ development, and seed dormancy), resistance to abiotic and biotic stresses, and symbiotic nitrogen fixation with rhizobia, as well as molecular breeding. We propose avenues for molecular biology research on Medicago in the coming decade, highlighting those areas that have yet to be investigated or that remain ambiguous.more » « lessFree, publicly-accessible full text available February 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available